Covariate Adjusted Correlation Analysis via Varying Coefficient Models
نویسنده
چکیده
We propose covariate adjusted correlation (Cadcor) analysis to target the correlation between two hidden variables that are observed after being multiplied by an unknown function of a common observable confounding variable. The distorting effects of this confounding may alter the correlation relation between the hidden variables. Covariate adjusted correlation analysis enables consistent estimation of this correlation, by targeting the definition of correlation through the slopes of the regressions of the hidden variables on each other and by establishing a connection to varying-coefficient regression. The asymptotic distribution of the resulting adjusted correlation estimate is established. These distribution results, when combined with proposed consistent estimates of the asymptotic variance, lead to the construction of approximate confidence intervals and inference for adjusted correlations. We illustrate our approach through an application to the Boston house price data. Finite sample properties of the proposed procedures are investigated through a simulation study.
منابع مشابه
Covariate-adjusted varying coefficient models.
Covariate-adjusted regression was recently proposed for situations where both predictors and response in a regression model are not directly observed, but are observed after being contaminated by unknown functions of a common observable covariate. The method has been appealing because of its flexibility in targeting the regression coefficients under different forms of distortion. We extend this...
متن کاملInference for Covariate Adjusted Regression via Varying Coefficient Models
We consider covariate adjusted regression (CAR), a regression method for situations where predictors and response are observed after being distorted by a multiplicative factor. The distorting factors are unknown functions of an observable covariate, where one specific distorting function is associated with each predictor or response. The dependence of both response and predictors on the same co...
متن کاملCovariate-Adjusted Generalized Linear Models
We propose covariate adjustment methodology for a situation where one wishes to study the dependency of a generalized response on predictors while both predictors and response are distorted by an observable covariate. The distorting covariate is thought of as a size measurement that affects predictors in a multiplicative fashion. The generalized response is modeled by means of a random threshol...
متن کاملPartly functional temporal process regression with semiparametric profile estimating functions.
SUMMARY Marginal mean models of temporal processes in event time data analysis are gaining more attention for their milder assumptions than the traditional intensity models. Recent work on fully functional temporal process regression (TPR) offers great flexibility by allowing all the regression coefficients to be nonparametrically time varying. The existing estimation procedure, however, preven...
متن کاملQuantifying geographic variations in associations between alcohol distribution and violence: A comparison of geographically weighted regression and spatially varying coefficient models
Past studies consistently indicate measurable local associations between alcohol distribution and the incidence of violence. These results, coupled with measurements of spatial correlation, reveal the importance of spatial analysis in the study of the interaction of alcohol and violence. While studies increasingly incorporate spatial correlation among model residuals to improve precision and re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005